Jointly Gaussian random variables, MMSE and linear MMSE estimation

نویسنده

  • Namrata Vaswani
چکیده

• Proof: X is j G implies that V = uX is G with mean uμ and variance uΣu. Thus its characteristic function, CV (t) = e ituμe−t 2uTΣu/2. But CV (t) = E[e itV ] = E[e TX ]. If we set t = 1, then this is E[e TX ] which is equal to CX(u). Thus, CX(u) = CV (1) = e iuμe−u TΣu/2. • Proof (other side): we are given that the charac function ofX, CX(u) = E[eiuTX ] = e μe−u TΣu/2. Consider V = uX. Thus, CV (t) = E[e itV ] = CX(tu) = e iuμe−t 2uTΣu/2. Also, E[V ] = uμ, var(V ) = uΣu. Thus V is G.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the role of MMSE estimation in approaching the information-theoretic limits of linear Gaussian channels: Shannon meets Wiener

This paper explains why MMSE estimation arises in lattice-based strategies for approaching the capacity of linear Gaussian channels, and comments on its properties.

متن کامل

Analytic MMSE Bounds in Linear Dynamic Systems with Gaussian Mixture Noise Statistics

Using state-space representation, mobile object positioning problems can be described as dynamic systems, with the state representing the unknown location and the observations being the information gathered from the location sensors. For linear dynamic systems with Gaussian noise, the Kalman filter provides the Minimum Mean-Square Error (MMSE) state estimation by tracking the posterior. Hence, ...

متن کامل

Estimation Efficiency Under Privacy Constraints

We investigate the problem of estimating a random variable Y ∈ Y under a privacy constraint dictated by another correlated random variable X ∈ X , where estimation efficiency and privacy are assessed in terms of two different loss functions. In the discrete case, we use the Hamming loss function and express the corresponding utility-privacy tradeoff in terms of the privacy-constrained guessing ...

متن کامل

Reconstruction of Signals Drawn from a Gaussian Mixture from Noisy Compressive Measurements: MMSE Phase Transitions and Beyond

This paper determines to within a single measurement the minimum number of measurements required to successfully reconstruct a signal drawn from a Gaussian mixture model in the low-noise regime. The method is to develop upper and lower bounds that are a function of the maximum dimension of the linear subspaces spanned by the Gaussian mixture components. The method not only reveals the existence...

متن کامل

IRWIN AND JOAN JACOBS CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES Asymptotic MMSE Analysis Under Sparse Representation Modeling

Compressed sensing is a signal processing technique in which data is acquired directly in a compressed form. There are two modeling approaches that can be considered: the worst-case (Hamming) approach and a statistical mechanism, in which the signals are modeled as random processes rather than as individual sequences. In this paper, the second approach is studied. Accordingly, we consider a mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012